Пространство, время и движение. Величайшие идеи Вселенной - Кэрролл Шон Страница 38

- Категория: Научные и научно-популярные книги / Научпоп
- Автор: Кэрролл Шон
- Страниц: 55
- Добавлено: 2025-08-30 22:00:08
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту pbn.book@yandex.ru для удаления материала
Пространство, время и движение. Величайшие идеи Вселенной - Кэрролл Шон краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Пространство, время и движение. Величайшие идеи Вселенной - Кэрролл Шон» бесплатно полную версию:Ученые знают о том, как устроены наш мир, Вселенная, но знания эти чаще всего выражаются в виде формул, которые кажутся нам беспорядочным нагромождением букв и символов. Благодаря Шону Кэрроллу вы увидите в них вдохновляющую поэзию, взлетите в небеса, окрыленные ею, чтобы смотреть на чудесную многомерную страну — искривленное пространство-время, — в которой живут сияющие гиганты и действуют могучие силы. Высшая математика, словно веками полировавшийся алмаз, сама по себе достойна не меньшего восхищения, чем «Мона Лиза». Это язык, на котором написаны научные поэмы о черных дырах.
Книга написана в традициях легендарных лекций Ричарда Фейнмана, которые тот прочел шестьдесят лет назад. Это ослепительно яркий прожектор, помогающий людям из самых разных культур и поколений по-новому посмотреть на окружающий мир.
Шон Кэрролл, как никто другой, может объяснить самые трудные для понимания концепции, приоткрыть завесу, столь долго скрывавшую самые важные конструкции современной науки. Он обладает особым талантом излагать сложнейшие понятия в увлекательной форме, доходчиво доводить до читателя фундаментальные идеи, лежащие в основе реальной физики.
Пространство, время и движение. Величайшие идеи Вселенной - Кэрролл Шон читать онлайн бесплатно
Каждый элемент квадратной матрицы имеет два индекса (номер строки и номер столбца). Тензоры не обязаны быть квадратными: индексов может быть сколько угодно, но их значения связаны с размерностью конкретного многообразия[22].
Вектор — это тензор с одним индексом. Мы рисуем векторы в виде куда-то направленных стрелок какой-то длины. Но выбрав систему координат, например (x, y, z), мы можем выразить вектор как сумму компонентов, направленных вдоль осей этой системы:

(7.15)
В отличие от вектора матрица — тензор с двумя индексами, а функция — тензор без индексов (с нулевым их количеством). Индексов может быть больше двух. Записать такой тензор в виде массива элементов непросто, но можно. Было бы желание. Например, можно представить трехиндексный тензор как вектор двухиндексных тензоров:

(7.16)
Не знаю, зачем это может понадобиться, но это вполне допустимо. И все же, когда число индексов больше двух, проще думать об отдельных элементах, а не о том, как выглядит какой-то гигантский массив.
Второй способ определить тензор — представить его в виде отображения одного набора тензоров на другой тензор. Замкнутый круг? Что делать, все взаимосвязано. Например, если у нас есть два вектора, νi и wj, мы можем подставить их в матрицу и вывести численное значение. Метрический тензор работает как черный ящик: на вход поступают два вектора, а на выходе получается число.

Чтобы получить это число, необходимо подставить соответствующие элементы векторов в матрицу, а затем последовательно сложить полученные значения, перебирая значения верхних и нижних индексов:

(7.17)
Это выражение широко известно, по крайней мере среди людей, кто часто сталкивается с векторами. Мы говорим о скалярном, или внутреннем, произведении двух векторов:

(7.18)
В обычном евклидовом пространстве скалярное произведение двух векторов равно произведению их длин на косинус угла между ними. Если векторы направлены в одну сторону, оно равно произведению их длин, а если в противоположные — всегда равно нулю.
Мы только что открыли маленький секрет: метрика не только позволяет вычислить длину кривой, но и определяет, что такое «перпендикуляр». Если две линии пересекаются, а скалярное произведение векторов, касательных к ним в точке пересечения, равно нулю, такие линии считаются перпендикулярными. Вот вам пример того, что метрика содержит в себе все данные о геометрии пространства.
Вы заметили, что индексы записываются то надстрочными (как у векторов и координат), то подстрочными знаками (как у метрик)? Так делается не по чьей-то странной прихоти. Верхние и нижние индексы имеют важные отличия. Сейчас нам достаточно знать лишь то, что суммирование по индексам, как в выражении (7.17), допустимо лишь при условии, что один и тот же индекс представлен и в верхнем, и в нижнем вариантах. Индексы, по которым идет суммирование, называются «немыми», а все остальные — «свободными». Свободные индексы могут иметь любые, но одинаковые во всех слагаемых значения, немые не имеют «значения», но лишь показывают, что нужно «сложить все возможные элементы с соответствующим индексом».
Суммирование по немым индексам настолько часто используется в тензорном исчислении, что Эйнштейн придумал, как упростить запись формул. Это изобретение называется правилом Эйнштейна и заключается в том, что если в формуле тензора либо произведения тензоров один и тот же индекс используется и в верхнем, и в нижнем вариантах, мы можем опустить знак суммы. Например:

(7.19)
Эйнштейн был настолько доволен своим правилом, что как-то сказал одному из друзей: «Я сделал великое математическое открытие!» Для общей теории относительности суммирование по немым индексам — чрезвычайно важная операция, поэтому правило Эйнштейна помогает нам сберечь немало времени.
Параллельный перенос
Огромная заслуга Римана в том, что предложенная им метрика многообразия действительно содержит все данные о его кривизне и геометрических свойствах. Настало время подумать о том, как извлечь эти данные. Мы начнем с разговора о том, как можно переместить вектор из одной точки в другую. На этот процесс не может не влиять кривизна. К сожалению, нам придется сильно усложнить математические формулы. Поэтому мы остановимся только на самых важных моментах, а всех интересующихся деталями я адресую за ними в приложение Б.
Представьте, что вы находитесь в какой-то точке искривленного многообразия и держите в руках вектор. Пусть, например, это будет вращающийся гироскоп, ось которого сориентирована в каком-то пространственном направлении. На некотором расстоянии от вас стоит другой человек, у которого тоже есть вектор. Нужно сравнить эти векторы: по направлению, по длине и т. д. Как это сделать?
В привычном нам плоском пространстве нет ничего проще. Нужно подойти к этому человеку, продолжая держать вектор и не меняя его направления, а затем приложить два вектора друг к другу. Но что значит «не меняя направления»? Один из вариантов — построить традиционную декартову систему координат и сохранить все компоненты вектора неизменными. Тогда мы сможем без всяких проблем таскать его с места на место.

Но вот беда: такой подход не работает в неплоских геометриях. В них нет «декартовых систем координат», в основе которых лежит плоская метрика. Но может быть, эта проблема чисто техническая, и можно найти какой-то эквивалент сохранения направления вектора при переносе?
Действительно можно. Параллельный перенос — это процесс, в ходе которого вектор, исходящий из какой-то точки, перемещается по определенной траектории, оставаясь параллельным себе самому в предыдущем положении. (Как вы, возможно, догадались, последовательные положения будут отстоять друг от друга на бесконечно малое расстояние, а значит, тянуть вектор мы будем не без помощи высшей математики.)
Какую же траекторию выбрать? В плоском пространстве не только хорошо понятно, как сохранить направление вектора, но и не важно, каким путем при этом двигаться. В произвольном искривленном пространстве это не так. Мы можем убедиться в этом, если рассмотрим параллельный перенос по двумерной сфере.
Допустим, вектор начинается в какой-то точке на экваторе и направлен на север. Направимся к северному полюсу, сохраняя вектор неподвижным. Это несложно сделать, ведь вектор будет все время направлен по касательной к траектории. Теперь представим себе другой сценарий. Сначала мы пройдем какое-то расстояние вдоль экватора, а затем повернем к полюсу.

Сравнив два принесенных на полюс вектора, мы увидим, что они направлены в разные стороны. А ведь мы так старались держать их, не изменяя направление. Такого бы никогда не случилось на плоскости, на сфере же неизбежно: параллельный перенос вектора по разным траекториям приведет к разным результатам. Но как мы увидим немного позже, этот неудачный опыт позволит нам четко определить, что понимается под словом «кривизна». (Обратите внимание: мы переносим вектор, находясь на сфере, а не глядя на нее из окружающего пространства.)
Мы столкнулись с важной и порой неочевидной особенностью искривленного пространства (или пространства-времени): не существует универсального способа, позволяющего сравнить векторы, находящиеся в разных точках. Мы можем переместить вектор, не изменяя его положения относительно траектории, но результат будет зависеть от нашего выбора: другая траектория может дать совершенно иной результат. Вот почему мы не можем, к примеру, судить о «скоростях» далеких галактик в расширяющейся Вселенной. Да, мы все пытаемся их измерить, однако непроизвольно делаем выбор в пользу какого-то определенного способа сравнения. Это нормально, но мы должны помнить о разнице между тем, что определено четко и точно, а что просто удобно для нас. Примерно о том же мы говорили в главе 6, отправляя близнеца в космос: нужно мыслить локально и сравнивать величины, измеренные в одной и той же точке, а не обманывать себя, пытаясь сопоставить происходящее где-то далеко с тем, что творится рядом с нами.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.