Пространство, время и движение. Величайшие идеи Вселенной - Кэрролл Шон Страница 39

- Категория: Научные и научно-популярные книги / Научпоп
- Автор: Кэрролл Шон
- Страниц: 55
- Добавлено: 2025-08-30 22:00:08
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту pbn.book@yandex.ru для удаления материала
Пространство, время и движение. Величайшие идеи Вселенной - Кэрролл Шон краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Пространство, время и движение. Величайшие идеи Вселенной - Кэрролл Шон» бесплатно полную версию:Ученые знают о том, как устроены наш мир, Вселенная, но знания эти чаще всего выражаются в виде формул, которые кажутся нам беспорядочным нагромождением букв и символов. Благодаря Шону Кэрроллу вы увидите в них вдохновляющую поэзию, взлетите в небеса, окрыленные ею, чтобы смотреть на чудесную многомерную страну — искривленное пространство-время, — в которой живут сияющие гиганты и действуют могучие силы. Высшая математика, словно веками полировавшийся алмаз, сама по себе достойна не меньшего восхищения, чем «Мона Лиза». Это язык, на котором написаны научные поэмы о черных дырах.
Книга написана в традициях легендарных лекций Ричарда Фейнмана, которые тот прочел шестьдесят лет назад. Это ослепительно яркий прожектор, помогающий людям из самых разных культур и поколений по-новому посмотреть на окружающий мир.
Шон Кэрролл, как никто другой, может объяснить самые трудные для понимания концепции, приоткрыть завесу, столь долго скрывавшую самые важные конструкции современной науки. Он обладает особым талантом излагать сложнейшие понятия в увлекательной форме, доходчиво доводить до читателя фундаментальные идеи, лежащие в основе реальной физики.
Пространство, время и движение. Величайшие идеи Вселенной - Кэрролл Шон читать онлайн бесплатно
Геодезические линии
В начале главы 3 мы думали, как провести прямую линию между двумя деревьями. Можно натянуть между ними веревку, а можно просто идти от одного к другому. В обоих случаях мы получим одну и ту же прямую. Все то же самое можно проделать и на любом искривленном многообразии в геометрии Римана, хотя построенная линия вряд ли будет прямой. К примеру, на сфере мы получим большой круг или его дугу.
Линия между двумя точками, при движении по которой мы проходим минимальное расстояние (или затрачиваем максимум собственного времени, если речь идет о пространстве-времени), называется геодезической. Такие линии описываются формулами (см. приложение Б), которые можно вывести примерно так же, как делалось в главе 3 при обсуждении принципа наименьшего действия. Тогда мы говорили о пространстве путей, по которым может пройти частица, связывали с каждым из них какое-то количество действия и находили такой, на котором оно минимально (а производная действия в пространстве путей равна нулю). При поиске геодезических линий мы будем действовать точно так же, но вместо действия будем минимизировать длину кривой.

Геодезическая линия — это не только кратчайший путь: она во всех отношениях ведет себя, как прямая. Например, при движении по ней работает параллельный перенос вектора. Рассмотрим траекторию, которая представляет собой последовательность точек с параметром, позволяющим определить местоположение вдоль нее. Например, мы можем использовать формулу xi(t), где xi — координаты в соответствующем количестве измерений (сколько бы их ни было), а t — параметр, определенный вдоль траектории. (Часто таким параметром действительно служит время, но здесь буква t лишь удобное обозначение.) Тогда можно определить вектор скорости vi = dxi/dt, который направлен по касательной к траектории по ходу движения. Его длина показывает, как быстро мы перемещаемся.

А что значит «сохранять направление движения»? Это когда положение вектора скорости относительно траектории не изменяется, то есть осуществляется параллельный перенос этого вектора. Поэтому можно дать еще одно определение геодезической линии: это путь, при движении по которому вектор скорости остается параллельным начальному вектору скорости. Выходит, что параллельный перенос вектора связан с метрическим тензором: кривые, на которых возможен параллельный перенос, имеют минимальную длину.
Кривизна
Итак, к чему мы пришли? Метрический тензор — самая базовая геометрическая структура многообразия. Он позволяет определять длины траекторий, находить площади и объемы многомерных областей пространства и вычислять скалярные произведения векторов. Он говорит нам, как выполнять параллельный перенос векторов вдоль кривой: мы выяснили, что для этого нужны геодезические линии — кратчайшие пути между точками. Именно параллельный перенос позволит нам сложить последнюю часть головоломки: полностью кривизну пространства.
Сфера и гиперболическая плоскость — это самые простые искривленные многообразия, кривизна которых одинакова во всех точках и направлениях. Для более сложных случаев хотелось бы придумать способ надежно определять кривизну в любой точке многообразия. Мы уже поняли, что метрика не слишком подходит для этой цели, поскольку зависит от выбранной системы координат и при одной и той же геометрии может быть проще или сложнее. Нужная нам величина (возможно, тензор) должна однозначно показывать кривизну пространства и принимать нулевое значение при ее отсутствии.
При параллельном переносе вектора по двум разным траекториям итоговый вектор не совпадает с исходным. Мы уже видели это на примере сферы, когда переносили вектор с экватора на полюс. Аналогичным образом, если начать движение с полюса, дойти до экватора, переместиться вдоль него, а затем вернуться на полюс, направление вектора также изменится. Это очень важный момент: параллельный перенос по замкнутому контуру, как правило, не позволяет сохранить исходный вектор. По крайней мере в искривленных пространствах.
Мы можем использовать это наблюдение для оценки кривизны: на плоских множествах при параллельном переносе по замкнутому контуру вектор сохраняет направление, на искривленных — отклоняется на какой-то угол.
Однако проблема в том, что замкнутых контуров очень много и описать поведение векторов на них едва ли реально. Поэтому мы должны выбрать какой-то ограниченный набор характерных контуров, которые несложно описать в численном виде.
И здесь нам на помощь придет уже ставший привычным прием: мы будем мыслить бесконечно малыми величинами и применять высшую математику. Такой подход к изучению пространств с произвольной кривизной называется дифференциальной геометрией.
Представим себе два вектора, и
, исходящие из одной точки p. Начиная из этой точки, сместимся на бесконечно малое расстояние в направлении
, а затем на бесконечно малое расстояние в направлении
. (Технически мы перемещаемся на расстояние, пропорциональное длине этих векторов.) После этого мы вернемся в исходную точку, сначала сместившись в направлении, обратном
, а затем в направлении, обратном
. Таким образом мы получили бесконечно малый замкнутый контур, который имеет форму параллелограмма[23].

Чтобы определить такой контур, не требуется много данных: нужны всего два вектора и точка. Чтобы измерить кривизну, возьмем еще один, третий вектор , который также исходит из начальной точки. В результате параллельного переноса по контуру мы получим новый вектор
. На плоском многообразии старый и новый векторы совпадут:
, на искривленном же будут немного отличаться друг от друга. Поэтому мы можем найти их разность:

(7.20)
Именно так мы будем определять кривизну в любой точке произвольного многообразия. Построив контур при помощи двух векторов и выполнив параллельный перенос третьего вектора, мы получим итоговый вектор, который покажет нам, как сильно искривлено пространство. На почти плоских множествах он будет очень мал, на сильно искривленных — относительно велик.
Иными словами, мы получили отображение множества из трех векторов на четвертый вектор,
. Мы уже знаем, что такие отображения называются тензорами. В данном случае перед нами тензор кривизны Римана: на его вход поступают два вектора, определяющие контур, и вектор для параллельного переноса, на выходе образуется четвертый вектор, который показывает кривизну на этом контуре.

Можно подумать, что вычислять изменение вектора, циркулирующего по контуру в каждой точке пространства, — громоздкая и сложная задача. Но нам на помощь приходит «магия» тензоров. Представим все вектора в виде их компонентов: Ui, Vi и т. д. Число компонентов i равно размерности исследуемого многообразия.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.