Космологические коаны. Путешествие в самое сердце физической реальности - Энтони Агирре Страница 17

Тут можно читать бесплатно Космологические коаны. Путешествие в самое сердце физической реальности - Энтони Агирре. Жанр: Разная литература / Зарубежная образовательная литература. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте FullBooks.club (Фулбукс) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Космологические коаны. Путешествие в самое сердце физической реальности - Энтони Агирре

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту pbn.book@yandex.ru для удаления материала


Космологические коаны. Путешествие в самое сердце физической реальности - Энтони Агирре краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Космологические коаны. Путешествие в самое сердце физической реальности - Энтони Агирре» бесплатно полную версию:

Энтони Агирре — не только известный физик, космолог и математик, но и популяризатор науки, выступавший как эксперт в ряде документальных фильмов. В своих “Космологических коанах” он решил рассказать об устройстве нашего мира именно как физик и прибегнул для этого к практике дзен-буддистских коанов. Коаны — это своего рода притчи, в которых заключено учение о реальности, как оно понимается адептами дзен-буддизма. Таких коанов в книге несколько десятков, и каждый из них затрагивает какую‑то одну тему (классическую и квантовую механику, теорию вычислений, энтропию и т. д.). Нелегко говорить о таких сложных предметах понятно и увлекательно, но автору это удалось: вдумчивый читатель еще раз убеждается, что наша Вселенная — место довольно таинственное и что между ее свойствами и существованием людей есть связь.
Физик, космолог, математик и популяризатор науки Энтони Агирре использует практику дзен-буддистских коанов как инструмент познания физического устройства вселенной. И добивается невероятных результатов. Книга Аггире построена весьма нестандартным и, можно сказать, даже парадоксальным образом. Впрочем, это полностью соответствует её целям: показать, что физика как наука, пытающаяся постигнуть строение Вселенной, развивается прежде всего при помощи революционного прозрения, для которого надо научиться нарушать правила, ломать устоявшиеся формы и преодолевать привычный ход мыслей. В качестве инструмента Агирре использует практику буддийских коанов, небольших поучительных притч, призванных заставить слушателей задуматься над устройством мира и своем месте в этом мире. Убрав из коанов всю восточную философию, Аггире заменяет её физикой. Таким образом, каждой небольшой главке предшествует маленькая история, которая ставит перед читателем ряд вопросов, на которые Аггире отвечает с точки зрения физики. Постепенно эти истории начинают переплетаться, как и переплетаются объясняющие их физические законы и гипотезы. Таким образом из этих разрозненных космологических коанов складывается масштабная картина Вселенной в том виде, в котором она доступна современной науке.

Космологические коаны. Путешествие в самое сердце физической реальности - Энтони Агирре читать онлайн бесплатно

Космологические коаны. Путешествие в самое сердце физической реальности - Энтони Агирре - читать книгу онлайн бесплатно, автор Энтони Агирре

на бумаге — перечислите возможные пути, измерите их длину и найдете кратчайший. Но вскоре вы можете обнаружить, что кратчайший и быстрейший пути — это не одно и то же: иногда по более длинной автостраде вы доедете гораздо быстрее, чем по короткой проселочной дороге. Чтобы найти самый быстрый путь, вы должны каждый из возможных путей разбить на сегменты длиной A d и в каждом сегменте оценить скорость v, с которой вы можете преодолеть этот сегмент. Время, за которое вы преодолеваете данный сегмент, равно ∆t = ∆d/v, а суммируя время по всем сегментам, вы получаете общее время, которое затрачивается при движении по этому пути. Сравнивая времена, относящиеся ко всем возможным путям, вы находите самый быстрый.

Задача нахождения легчайшего пути при спуске с горы немного другая. Ваша цель — не побыстрее спуститься с горы, а затратить при этом как можно меньше усилий. Сложность состоит в том, что после того как вы спуститесь с определенной высоты, вам придется преодолеть горизонтальный участок (чтобы попасть к выходу реки на равнину). Вы можете выбрать пологие участки, по которым спускаться тяжелее, но которые зато покрывают большую часть пути, а можете выбрать крутые участки, где спускаться хотя и легче, но высота теряется слишком быстро. Мы можем написать выражение для усилия в виде:

(усилие) = (потеря высоты) × (сложность спуска).

Здесь сложность определяется тем, с каким напряжением вам придется спуститься с данной высоты. И мы знаем, что сложность тем больше, чем более плоска на данном участке тропа.

Мы, как и в случае сложения интервалов времени при движении между двумя точками пространства, должны суммировать усилия при спуске от начальной точки до конечной, разделив весь путь на маленькие отрезки. Затем для каждого такого маленького отрезка мы умножим потерю высоты на этом отрезке на сложность его преодоления и в результате найдем усилие, затраченное на спуск на этом сегменте пути. Суммируя все эти небольшие усилия, мы получим полное усилие, затраченное на весь спуск с горы.

Процедура расчета проста: и для вычисления времени, затраченного на путь, и для вычисления усилий, затраченных на спуск, мы должны сначала разделить весь путь на сегменты, затем умножить каждый интервал на некую величину — назовем ее, скажем, L, и наконец просуммировать все произведения. Величина L может зависеть от различных особенностей пути, например, от скорости или от того, насколько тяжело приходится работать, спускаясь со склона с заданной крутизной. Нахождение оптимального пути сводится к тому, чтобы просуммировать L по каждому пути, получить для него значение суммы — назовем ее S, — а затем выбрать путь с минимальным S. И этим способом находится как путь с минимальным временем, так и путь с минимальным затраченным усилием.

Это похоже на решаемую нами проблему, а значит, нужно рассмотреть все возможные пути, ведущие вниз с горы, разбить каждый из них на сегменты, найти крутизну каждого сегмента, определить, насколько сложно будет тащить повозку по склону с данной крутизной (имея в виду, что крутизна не может быть ниже критической величины, так как при меньшей крутизне повозка двигаться не будет), умножить сложность преодоления этого участка на его высоту и просуммировать результаты по всем сегментам. Повторить эту процедуру для всех троп и в конце концов найти ту, для которой суммарное усилие окажется наименьшим.

Что-то слишком уж трудоемко, правда? И как же вы поступите на практике? Разумеется, не так — следовать правилам слишком сложно. Вместо этого вы скорее всего выберете путь с разумным перепадом высоты при разумной длине пути — то есть самую подходящую тропу. Для начала вы хорошенько осмотритесь, наметите еще сверху, с перевала, соответствующее направление — так, чтобы не застрять где-то, а затем справитесь со спуском и вдобавок получите удовольствие от окружающего пейзажа.

И разве не удивительно, что, спустившись по выбранной тропе, вы обнаружите, что выбрали в точности самый простой из всех возможных путей, ни разу не сделав неправильного поворота?

И это как раз то самое, что делают физические частицы! Через 150 лет после Галилея Джозеф Луи Лагранж вывел замечательную систему уравнений, в которых лагранжиан (мы ввели обозначение L не случайно) связывается с силой, действующей на частицу, перемещающуюся в пространстве-времени между двумя событиями. Эти уравнения позволяют нам взглянуть на ту же физику, то есть на законы, которые определяют то, как объекты перемещаются в пространстве и времени, с двух разных, но эквивалентных точек зрения.

С одной точки зрения (с которой мы уже познакомились), объект в каждый момент подвергается действию силы, принуждающей его изменить скорость определенным образом. Действие этой силы во времени определяет траекторию частицы.

С другой точки зрения, данный путь в целом «отбирается» природой из всех возможных путей, поскольку на нем достигается минимум или максимум (экстремум) суммарной величины L. Этот метод, у которого есть и другие приложения, часто называют принципом наименьшего действия (хотя, как мы вскоре увидим, это название слегка сбивает с толку, поскольку иногда это на самом деле принцип наибольшего действия). Данный метод и метод сил и скоростей приводят в точности к одним и тем же результатам. Замечательно!

Но как быть с частицей, на которую не действует никакая сила? Мы вместе с Галилеем видели, что она должна двигаться по прямой, а это значит, что ее скорость не должна меняться. Но мы также можем идентифицировать прямой путь как путь, при котором расстояние в пространстве минимально. Для расчета пространственного расстояния мы разбиваем путь на маленькие кусочки и суммируем их физические длины. В этом смысле, если не приложены силы, суммарный лагранжиан L есть просто физическое расстояние.

Мы с вами можем предпринять еще кое-что. Для Галилея говорить только о пространстве — это нормально. Но если мы хотим следовать Эйнштейну, то должны рассматривать пространство и время совместно. Вспомним: обсуждая БАШНЮ, мы поняли, что объект, на который не действуют силы, движется по прямой в пространстве-времени. Можем ли мы определить эту траекторию с помощью минимизации (максимизации) какой-либо величины? Да, но с осторожностью — эта величина должна иметь физический смысл и быть однозначно определенной, а не чем-то вроде проходимого в пространстве расстояния или затраченного на него времени. Действительно в коане «ВЕНЕЦИАНСКИЕ СНЫ» мы видели, что и то, и другое — величины относительные, то есть зависящие от системы отсчета.

Предположим, что к нашему объекту, движущемуся в пространстве-времени, приделаны часы; если же это человек, то у него есть внутренние часы — сердце (будем называть отсчитанное им время

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.