Норберт Винер - Кибернетика или управление и связь в животном и машине Страница 27

- Категория: Научные и научно-популярные книги / Прочая научная литература
- Автор: Норберт Винер
- Год выпуска: неизвестен
- ISBN: нет данных
- Издательство: неизвестно
- Страниц: 79
- Добавлено: 2019-02-10 16:59:05
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту pbn.book@yandex.ru для удаления материала
Норберт Винер - Кибернетика или управление и связь в животном и машине краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Норберт Винер - Кибернетика или управление и связь в животном и машине» бесплатно полную версию:«Кибернетика» — известная книга выдающегося американского математика Норберта Винера (1894—1964), сыгравшая большую роль в развитии современной науки и давшая имя одному из важнейших ее направлений. Настоящее русское издание является полным переводом второго американского издания, вышедшего в 1961 г. и содержащего важные дополнения к первому изданию 1948 г. Читатель также найдет в приложениях переводы некоторых статей и интервью Винера, включая последнее, данное им незадолго до смерти для журнала «Юнайтед Стэйтс Ньюс энд Уорлд Рипорт».Книга, написанная своеобразным свободным стилем, затрагивает широкий круг проблем современной науки, от сферы наук технических до сферы наук социальных и гуманитарных. В центре — проблематика поведения и воспроизведения (естественного и искусственного) сложных управляющих и информационных систем в технике, живой природе и обществе. Автор глубоко озабочен судьбой науки и ученых в современном мире и резко осуждает использование научного могущества для эксплуатации и войны.Книга предназначена для научных работников и инженеров.
Норберт Винер - Кибернетика или управление и связь в животном и машине читать онлайн бесплатно
Для случая, когда преобразование Т или группа преобразований Тλ не являются эргодическими, фон Нейман показал, что при очень общих условиях они могут быть сведены к эргодическим составляющим. Это значит, что, отбросив множество значений х нулевой меры, Е можно разбить на конечное или счетное множество классов Еn и континуум классов Е(y), таких, что на каждом Еn и Е(y) устанавливается мера, инвариантная при Т и Тλ. Все эти преобразования эргодические, и если S(y) — пересечение множества S с Е(y), Sn — пересечение множества S с Еn, то
(2.26)
Другими словами, вся теория сохраняющих меру преобразований может быть сведена к теории эргодических преобразований.
Заметим мимоходом, что вся эргодическая теория применима и к более общим группам преобразований, [c.113] чем те, которые изоморфны с группой сдвигов по прямой. В частности, ее можно применить к группе сдвигов в n измерениях. Для физики важен случай трех измерений. Пространственным аналогом равновесия во времени служит пространственная однородность, и такие теории, как теория однородного газа, жидкости или твердого тела, основаны на применении трехмерной эргодической теории. Между прочим, примером неэргодической группы преобразований сдвига в трех изменениях может служить множество сдвигов смеси раздельных состояний, таких, что в данный момент существует то или другое состояние, но не их смесь.
Одним из кардинальных понятий статистической механики, получившим также применение в классической термодинамике, является понятие энтропии. Энтропия — это прежде всего свойство областей фазового пространства; она выражается логарифмом от их меры вероятности. Например, рассмотрим динамику n частиц, находящихся в сосуде, который разделен на две части: А и В. Если m частиц находится в А и n—m в В, то это характеризует некоторую область в фазовом пространстве, имеющую определенную меру вероятности. Логарифм этой меры есть энтропия распределения «m частиц в А, n—m в В». Большую часть времени система будет пребывать в состоянии, близком к состоянию наибольшей энтропии, в том смысле, что если комбинация «m1 в А, n—m1 в В» имеет наибольшую вероятность, то большую часть времени примерно m1 частиц будет в А и примерно n— m1 в В. Для систем с большим числом частиц и состояниями, еще остающимися в пределах практической различимости, это значит, что если взять состояние с энтропией ниже максимальной и наблюдать, что произойдет, то энтропия почти всегда возрастает.
В обычных термодинамических задачах о тепловом двигателе мы имеем дело с условиями, когда в больших областях, скажем в цилиндре двигателя, существует грубое тепловое равновесие. Состояния, для которых мы исследуем энтропию, уже являются состояниями максимальной энтропии для данной температуры и объема, где речь идет о немногих областях фиксированных объемов и температуры. Даже при более тонких рассмотрениях тепловых двигателей, в частности двигателей [c.114] типа турбины, где газ расширяется гораздо более сложным образом, чем в цилиндре, эти условия не изменяются очень сильно. Мы все еще может говорить с весьма хорошим приближением о местных температурах, хотя температура определима точно лишь в состоянии равновесия и методами, предполагающими такое равновесие. Но в живом веществе мы уже не можем предполагать даже этой грубой однородности. В строении белковой ткани, которое показывает электронный микроскоп, наблюдается чрезвычайная определенность и тонкость организации, и физиология такой ткани должна обладать соответственно тонкой организацией. Эта тонкость гораздо больше, чем у пространственно-временной шкалы обычного термометра, и потому температуры, измеряемые обычными термометрами в живых тканях, представляют грубые средние величины, а не истинные термодинамические температуры. Гиббсова статистическая механика может оказаться довольно адекватной моделью того, что происходит в живом теле; картина, подсказанная обычным тепловым двигателем, — заведомо нет. Тепловой коэффициент полезного действия мышц почти ничего не значит и, уж конечно, он не значит того, что он, казалось бы, должен значить.
Очень важное значение в статистической механике имеет идея максвеллова демона. Представим себе газ, в котором частицы движутся с распределением скоростей, остающимся в статистическом равновесии при данной температуре. Для идеального газа это будет распределение Максвелла. Пусть наш газ заключен в твердый сосуд с поперечной стенкой, снабженной небольшим отверстием; отверстие закрывается дверцей, приводимой в действие привратником — человекоподобным демоном или миниатюрным механизмом. Когда частица со скоростью выше средней подходит к дверце из отделения А или частица со скоростью ниже средней подходит к дверце из отделения В, привратник открывает дверцу и частица проходит через отверстие; когда же частица со скоростью ниже средней подходит из отделения А или частица со скоростью выше средней подходит из отделения В, дверца закрывается. Таким образом, частицы большей скорости сосредоточиваются в отделении В, а в отделении А их концентрация уменьшается. Это вызывает очевидное уменьшение энтропии, [c.115] и если соединить оба отделения тепловым двигателем, мы, как будто, получим вечный двигатель второго рода[137].
Легче отвергнуть вопрос, поставленный Максвеллом, чем ответить на него. Самое простое — отрицать возможность подобных существ или устройств. При строгом исследовании мы действительно найдем, что демоны Максвелла не могут существовать в равновесной системе, но если мы примем с самого начала эту невозможность и не будем пытаться доказать ее, то упустим прекрасный случай узнать кое-что об энтропии и о возможных физических, химических и биологических системах.
Чтобы демон Максвелла мог действовать, он должен получать от приближающихся частиц информацию об их скорости и точке удара о стенку. Независимо от того, связаны ли эти импульсы с переносом энергии или нет, они предполагают связь между демоном и газом. Но закон возрастания энтропии справедлив для полностью изолированной системы и неприменим к неизолированной части такой системы. Поэтому мы должны рассматривать энтропию системы газ — демон, а не энтропию одного газа. Энтропия газа есть лишь компонент общей энтропии более широкой системы. Можно ли найти другие, связанные с демоном компоненты, входящие в общую энтропию?
Без малейшего сомнения, можно. Демон способен действовать лишь на основании принимаемой информации, а эта информация, как мы увидим в следующей главе, представляет собой отрицательную энтропию. Информация должна переноситься каким-то физическим процессом, например какой-то формой излучения. Можно вполне допустить, что эта информация переносится на очень низком энергетическом уровне и что перенос энергии от частицы к демону в течение продолжительного времени имеет гораздо меньшее значение, чем перенос информации. Но по законам квантовой механики [c.116] нельзя получить информацию о положении или импульсе частицы, а тем более о том и другом без воздействия на энергию исследуемой частицы, причем это воздействие должно превышать некоторый минимум, зависящий от частоты света, применяемого для исследования. Поэтому во всякой связи необходимо участвует энергия, и система, находящаяся в статистическом равновесии, должна находиться в равновесии как по отношению к энтропии, так и по отношению к энергии. В конечном счете максвеллов демон будет подвержен случайному движению, соответствующему температуре окружающей среды, и, как говорит Лейбниц о некоторых монадах, будет получать большое число малых впечатлений, пока не впадет в «головокружение» и не потеряет способность к ясным восприятиям. По существу, он перестанет действовать как максвеллов демон.
Тем не менее до того как демон собьется с толку, может пройти немалое время, и оно может оказаться столь продолжительным, что мы вправе называть активную фазу демона метастабильной. Нет оснований полагать, что метастабильные демоны в действительности не существуют; напротив, вполне возможно, что энзимы являются метастабильными максвелловыми демонами, которые уменьшают энтропию, пусть не разделением быстрых и медленных частиц, а каким-нибудь другим эквивалентным процессом. Мы вполне можем рассматривать живые организмы, как и самого Человека, в этом свете. Без сомнения, энзим и живой организм одинаково метастабильны: стабильное состояние энзима наступает, когда он перестает действовать, а стабильное состояние живого организма наступает с его смертью. Все катализаторы в конце концов отравляются, ибо они изменяют лишь скорости реакций, но не меняют истинного равновесия. Тем не менее и катализаторы, и человек имеют настолько определенные состояния метастабильности, что эти состояния можно считать относительно постоянными.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.